Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change has led to a variety of disasters that have caused damage to infrastructure and the economy with societal impacts to human living. Understanding people’s emotions and stressors during disaster times will enable preparation strategies for mitigating further consequences. In this paper, we mine emotions and stressors encountered by people and shared on Twitter during Hurricane Harvey in 2017 as a showcase. In this work, we acquired a dataset of tweets from Twitter on Hurricane Harvey from 20 August 2017 to 30 August 2017. The dataset consists of around 400,000 tweets and is available on Kaggle. Next, a BERT-based model is employed to predict emotions associated with tweets posted by users. Then, natural language processing (NLP) techniques are utilized on negative-emotion tweets to explore the trends and prevalence of the topics discussed during the disaster event. Using Latent Dirichlet Allocation (LDA) topic modeling, we identified themes, enabling us to manually extract stressors termed as climate-change-related stressors. Results show that 20 climate-change-related stressors were extracted and that emotions peaked during the deadliest phase of the disaster. This indicates that tracking emotions may be a useful approach for studying environmentally determined well-being outcomes in light of understanding climate change impacts.more » « less
-
A bstract We explore possible extensions of the t -channel and s -channel unitary model of high energy evolution in zero transverse dimensions appropriate to very high energy/atomic number where the dipole density in a toy hadron is parametrically high. We suggest that the appropriate generalization is to allow emission of more than one dipole in a single step of energy evolution. We construct explicitly such a model that preserves the t -channel and s-channel unitarity and have the correct low density limit, and study the particle multiplicity distribution resulting from this evolution. We consider initial conditions of a single dipole and many dipoles at initial rapidity. We observe that the saturation regime in this model is preceded by a parametric range of rapidities $$ \frac{1}{\alpha_s}\ln \frac{1}{\alpha_s}<\frac{1}{\alpha_s}\ln \frac{1}{\alpha_s^2} $$ 1 α s ln 1 α s < Y < 1 α s ln 1 α s 2 , where the saturation effects are still unimportant, but multiple emissions determine the properties of the evolution. We also discuss the influence of the saturation on the parton cascade and, in particular, find that in the saturation regime the entropy of partons becomes S ≈ $$ \frac{1}{2} $$ 1 2 ln N where N is the mean multiplicity.more » « less
-
null (Ed.)A bstract Motivated by the question of unitarity of Reggeon Field Theory, we use the effective field theory philosophy to find possible Reggeon Field Theory Hamiltonians H RFT . We require that H RFT is self dual, reproduce all known limits (dilute-dense and dilute-dilute) and exhibits all the symmetries of the JIMWLK Hamiltonian. We find a family of Hamiltonians which satisfy all the above requirements. One of these is identical in form to the so called “diamond action” discussed in [67, 68]. However we show by explicit calculation that the so called “diamond condition” is not satisfied beyond leading perturbative order.more » « less
-
null (Ed.)A bstract Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian H JIMWLK . We find that the action H JIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution.more » « less
An official website of the United States government
